Novel experimental platform of human respiratory tract For emerging infectious diseases and precision medicine
Acute lung injury and Acute Respiratory Distress Syndrome (ARDS) are major causes of morbidity and mortality worldwide. Diverse causes lead to this pathology, including severe viral infections (avian influenza H5N1; SARS; MERS) and bacterial sepsis.
Host responses such as innate immune dysregulation and resulting impaired alveolar fluid clearance contribute to the pathology; hence, therapeutic strategies that target these adverse host responses need to be developed for use in conjunction with antimicrobials.
This program aims to improve the treatment of acute lung injury by producing innovative, physiologically relevant, disease platforms for screening therapeutic candidates and developing molecules for treating acute lung injury.
KEY PROJECTS
-
Develop acute lung-injury screening platforms for identification of novel therapeutic targets and for screening of potential interventions;
-
Evaluate the use of novel synthetic ion channel compounds to treat acute lung injury;
-
Develop a novel “mini” 3D human respiratory system and “lung-on-a-chip” model for assessment of pathogenesis and drug screening for respiratory diseases.
DELIVERABLES
-
Novel therapeutics for acute lung injury;
-
Novel, physiologically relevant experimental models of the human respiratory system for drug development;
-
Creation of intellectual property and technology-based startups for commercialization and translation into global healthcare solutions.
KEY RESEARCH STAFF IN THE TEAM
We have a multidisciplinary team with proven track-record of working together with previous joint publications.
Malik Peiris, Michael CW Chan and Kenrie PY Hui (virologists), John M Nicholls (pathologist) and George Tsao (all from HKU) have been working together on pathogenesis of virus respiratory infections and experimental models of the human respiratory system for over 10 years.
Roberto Bruzzone (HKU-PRP) studies host-pathogen interactions.
Michael Matthay and Jae W Lee (UCSF) are world leaders in the pathogenesis and therapy of acute lung injury and ARDS and have joint publications with the HKU group.
Samy Gobaa (IP) is an expert in microfluidics who will help generate a microfluidic perfusion on a chip to mimic physical stimuli in the respiratory system.

THE TEAM

Samy Gobba
Research Officer